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Abstract—In this paper an efficient structure to 
compute syndromes is proposed for Reed-Solomon 
decoders. The proposed method formulates all the 
computations relevant to syndromes as a matrix 
multiplication so as to enlarge the search area for 
common sub-expressions. In contrast to the 
conventional architecture, the proposed method 
completely removes finite-field adders as they are 
embedded in the single matrix multiplication. The 
hardware resources are drastically reduced by 
sharing common sub-expressions and eliminating 
finite-field adders. Syndrome calculation blocks for 
various RS codes are synthesized with a 0.13μm 
CMOS technology, and experimental results show 
that the proposed method reduces the hardware 
complexity of parallel syndrome calculation by 
approximately 50% compared to the conventional 
structure.    
 
Index Terms—ReedSolomon codes, error correction 
codes, syndrome calculation, area optimization  

I. INTRODUCTION 

Error-correction codes are widely used in 
communication systems to recover corrupted codewords 
from the noisy channel. Among a variety of error 

correction codes, the Reed-Solomon (RS) code forms the 
core of the most powerful algebraic codes due to its 
superior error correction performance in both burst and 
random errors [1, 2]. The RS code that corrects t error-
symbols has been commonly employed for error control 
in diverse systems such as digital broadcasting, optical 
communication, and digital storage [2, 3]. Most of those 
applications have continuously demanded ever higher 
decoding throughput as well as ever larger error-
correction capability, and these requirements necessitate 
high speed-RS decoders that can be realized by adopting 
architectural innovations such as parallel processing [4, 
5] and pipelining [6-8]. Massive-parallel RS decoding is 
recently inevitable, but the hardware overhead resulting 
from the high parallel factor is a serious burden in 
implementation.  

Syndrome calculation (SC)

Syndrome polynomial = S(x)

Key-equation solver (KES)

Error-locator polynomial = Λ(x) 

Error-position search (EPS)

RS encoder

Error = E(x)
C(x)

R(x) = C(x) + E(x)RS decoder

Corrected data

Error-mag. Evaluation (EME)

Error-mag. polynomial = Ω(x) 

FI
FO

 

Fig. 1. The typical RS decoder with 4 pipeline stages. 
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A RS codeword is usually decoded by conducting four 
steps as shown in Fig. 1: syndrome calculation (SC), key-
equation solving (KES), Error-position search (EPS), and 
Error-magnitude evaluation (EME). Especially, Chein 
and Forney algorithms are widely used for EPS and EME, 
respectively. Many optimization methods such as folding 
[7, 8] and common substructure sharing [9-13] have been 
presented to relax the complexities of Chien search and 
Forney processing. Though the SC block has been 
regarded as being associated with a relatively less 
complexity, those optimizations make it have almost the 
same complexity as the other blocks. In [4], the massive-
parallel SC block is reported to take almost a quarter of 
the whole decoder area as shown in Table 1. 

This paper proposes an efficient structure to curtail the 
hardware complexity of parallel syndrome calculation. 
The proposed method transforms all the computations of 
parallel SC into a matrix multiplication to enlarge the 
search space for common sub-expressions (CSEs). As a 
result, the proposed method maximizes the sharing of 
CSEs and drastically reduces the hardware complexity of 
parallel SC. 

II. SYNDROME CALCULATION 

For RS (n, k, t) code, every codeword consists of k 
message symbols and 2t parity symbols, and thus the 
codeword length n is k + 2t. Given a message, an n-
symbol codeword is constructed based on a generator 
polynomial g(x) that has αi (1≤i≤2t) as its roots. An n-th 
order polynomial C(x) is a valid codeword only when 
C(x) is a multiple of g(x).  

In the syndrome based RS decoding, the received 
vector (r0, r1, ···, rn-1) is interpreted as a polynomial, R(x) 
= r0 + r1x1 + ··· + rn-1xn-1, where ri is an element of GF(2m), 
and m is the smallest positive integer that satisfies 2m – 1 
≥ n. We first check if there are any errors in the received 
vector by computing 2t syndromes as follows;  
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If there is any non-zero syndrome, the received vector 

is regarded as being corrupted. Notice that the 2t 
syndromes are dependent solely on error patterns and 
independent of the transmitted codeword, since all the 
valid codewords are dividable by the generator 
polynomial g(x). 

As a symbol-serial SC unit processes a received 
symbol in a cycle, it takes n cycles. To reduce the 
decoding latency, more-than-one symbols should be 
simultaneously processed in cycle. If the number of 
received symbols processed in a cycle, so-called the 
parallel factor, is p, the processing latency can be 
improved by a factor of p as expressed in (2), 
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where p is assumed to be a divisor of n.  

In general, 2t syndromes are computed in parallel to 
achieve a high-throughput decoder. A conventional p-
parallel SC block consisting of 2t SC units is depicted in 
Fig. 2. Each SC unit enclosed by a dashed box is 
responsible for one syndrome. In the symbol-serial SC 

Table 1. Area analysis on a RS (255, 239, 8) decoder 

Components Gate counts 
SC 100,800 (23.2%) 

KES 156,000 (35.8%) 
EPS + EME 178,000 (40.9%) 

Total 434,800 (100 %) 
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Fig. 2. The conventional SC block that processes p symbols in 
parallel. 
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block in which p is 1, one SC unit consists of a finite-
field multipliers (FFMs), a two-input finite-field adder 
(FFA), and an m-bit register. However, a p-parallel SC 
unit takes p FFMs, a (p+1)-input FFA, and an m-bit 
register. Since the FFM is the most hardware consuming 
operation in the SC unit, the overall hardware complexity 
of the p-parallel SC unit is increased by almost p times 
compared to the symbol-serial SC unit. Hence, the 
hardware complexity is increased significantly if 
multiple symbols are processed in parallel to increase the 
decoding throughput. 

III. PROPOSED AREA-OPTIMIZED SC 

The main concept of the proposed method is to share 
common sub-expressions (CSEs) appearing more than 
once to reduce the hardware complexity. Briefly 
speaking, a CSE is evaluated only once, and then the 
result is used to replace such sub-expressions. For the 
syndrome calculation of RS codes, this paper applies an 
efficient optimization technique called the iterative 
matching algorithm [9] for the first time, and proposes a 
new method that enlarges the search area to find more 
common sub-expressions by considering all the 
calculations relevant to syndromes as a whole. 

 
1. Iterative Matching Algorithm 

 
A constant FFM in Fig. 2 that multiplies a received 

symbol rj by a constant αij over GF(2m), where 1 ≤ i ≤ 2t, 
0 ≤ j ≤ p, can be transformed to a binary matrix 
multiplication as follows;  
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where Rj is a binary 1×m matrix and Aij is a binary 
constant m×m matrix. Note that each element in GF(2m) 
is represented with m bits. As the modulo-2 addition and 
modulo-2 multiplication in (3) are implemented with 

XOR gates, the complexity of a binary matrix 
multiplication is usually represented by the number of 
XOR gates required to implement it. A constant matrix 
multiplication can be optimized by finding and sharing 
CSEs, and such methods have been developed for filter 
synthesis [9] and Chien search [10, 11]. This bit-level 
optimization, which is called iterative matching 
algorithm (IMA), is iteratively applied to find CSEs. A 
similar approach can be applied separately to each 
constant FFM appearing in Fig. 2.  

 
2. Search Space Expansion 

 

The computational complexity of p-parallel SC can be 
reduced by eliminating CSEs according to the IMA 
algorithm. As this approach has multiple search domains 
each of which is searched independently, it may be 
possible to find more CSEs if all the search domains are 
merged together. The search space is first expanded by 
considering a p-parallel SC unit as a whole, instead of 
considering each FFM independently like in the previous 
IMA algorithm. As shown in Fig. 2, the p-parallel SC 
unit processes p symbols in parallel. By combining p 
constant FFMs based on (2) and (3), the p-parallel SC 
unit can be represented as 
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where δi(j) represented by a binary 1×m matrix is the 
intermediate value of i-th syndrome shown in Fig. 2 and 
R(j) is an 1×mp binary matrix representing p symbols of 
the received codeword to be fed at the j-th iteration. The 
matrix XiR is a mp×m binary matrix relevant to the input 
symbols. In (4), we can see that all the computations in a 
single SC unit are collected into a single matrix 
multiplication as δi(j) becomes Si at the last iteration.  

Once again, all the 2t SC units are combined into a 
matrix multiplication to expand the search space further. 
The enlarged matrix multiplication that computes 2t 
intermediate values δi(j) for the next iteration is  
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where Δ(j) is a binary 1×2tm matrix containing 2t 
intermediate values of the j-th iteration. XR is a binary 
mp×2tm matrix associated with the received symbols, 
and XΔ is a binary 2tm×2tm matrix denoting 2t constant 
multiplications. Therefore, all the δi(j+1) values can be 
obtained by multiplying the input vector [R(j) Δ(j)] and 
the constant matrix consisting of XR and XΔ. [R(j) Δ (j)] 
is dependent on the iteration index j, but XR and XΔ are 
constant matrices independent of j. As the single matrix 
multiplication in (5) covers all the computations relevant 
to the 2t syndromes, we can find more CSEs from (5) 
than the direct IMA application does. Therefore, a low-
complexity SC block can be achieved by employing the 
reformulated Eq. (5). Compared to the previous 
architectures associated with multiple matrix 
multiplications, the proposed architecture has only a 
single matrix multiplication. 

 

3. Implementation Techniques 
 

Now, we will describe how to find common sub-
expressions appearing in the constant matrix 
multiplication of (5). The overall procedure is very 
similar to that of IMA [9] as both of them deal with a 
single matrix multiplication. The only difference is the 
wideness of search area. To find the best common sub-
expressions, we examine every possible pair of two rows 
in [XR

T XΔ
T]T to count the number of bit-wise common 

1’s between the two rows, and then select a pair 
associated with the highest count. The addition of the 
two input terms corresponding to the selected pair is the 
most common sub-expression in the [XR

T XΔ
T]T matrix. 

After finding a common sub-expression, the matrix is 
modified to replace the common sub expression with a 
new term. For every row including the selected pair, all 
the bits related to the sub-expression are changed to 0, 
and an 1 is appended to the last column in order to 
represent the common sub-expression. For the other rows 
without the selected pair, a 0 is appended to the last 
column. Lastly, a new row denoting the selected sub-
expression is appended to the last row. Therefore, the 
matrix size is increased by one in both the row and 
column directions. As one common sub-expression is 
found at a time, the above procedure is applied to the 
updated matrix so as to find another common sub-
expression, and repeat until there is no sub-expression 
appearing more than once. 

An example of the iterative CSE search is shown in 
Fig. 3. A multiplication by constant α12 is optimized in 
GF(24). The number of XOR gates is minimized through 
two iterations, and the best matches found in the 
iterations are marked with circles and squares. As a result, 
the number of XOR gates is reduced from 6 to 3. The 
same CSE search algorithm is applied to the matrix 
enlarged by the proposed method. 

The implementation based on the proposed algorithm 
is described in Fig 4. The conventional structure shown 
in Fig. 2 requires 2tp FFMs each to multiply a received 
symbol by a constant, and 2t FFAs each to add (p+1) 
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Fig. 3. CSE search and matrix update for α12 constant 
multiplication.     
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values. This paper is the first one that applies the 
common sub-expression elimination technique to the 
design of a SC block for RS codes. The single matrix 
multiplication of (5) combines all the FFMs and 
completely removes the FFAs because the addition is 
inherent in the matrix multiplication. As depicted in Fig. 
4, the proposed SC structure requires only one matrix 
multiplication to compute all the 2t syndromes. 
Compared to the previous architecture consisting of 
many GF multiplications, the proposed architecture 
reduces the hardware complexity significantly by 
providing a high chance to share CSEs. 

IV. EXPERIMENTAL RESULTS 

For various RS codes, we have compared the hardware 
complexity of syndrome calculation blocks by 
implementing three different architectures: 1) the 
conventional architecture shown in Fig. 2, 2) the 
architecture adopting the IMA, and 3) the proposed 
architecture. The conventional architecture is a 
straightforward implementation that computes (2) 
directly, and the IMA-based architecture separately 
searches each FFM for common sub-expressions. To 
maximize the search area for CSEs, the proposed 
architecture transforms all the syndrome calculations into 
a matrix multiplication, enlarging the matrix size to 
(mp+2mt)´2mt. 

Fig. 5 illustrates how the hardware complexity 
changes according to the parallel factor associated with 
RS (255, 239, 8) code. The hardware complexity is 
measured by the number of synthesize equivalent gates 

resulting from with a 0.13μm technology at 200MHz 
operating frequency. In case of the RS (255, 239, 8) code 
with a parallel factor of 8, the proposed architecture 
reduces approximately 50% of XOR gates compared to 
the conventional architecture. By enlarging the search 
space, the proposed method guarantees more sharing of 
CSEs than the IMA-based architecture. The more sharing 
of CSEs leads to a significant reduction of hardware 
complexity. Fig. 6 shows how the error-correction 
capability affects the hardware complexity, which 
compares three different SC blocks implemented for 
various RS (255, 255−2t, t) codes. All the SC blocks are 
designed with a parallel factor of 8. Note that the 
proposed architecture has the smallest complexity among 
the three architectures regardless of the RS codes.  

Furthermore, Table 2 describes detailed synthesis 
results for a RS (255, 239, 8) decoder so as to provide an 
effect on the overall decoder. Although the SC block has 
been considered as being associated with a relatively 
small complexity, the proposed method significantly 
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Fig. 4. The proposed p-parallel SC block. 
 

Table 2. Synthesis results for RS (255,239,8) codes 

Design Environments 
Technology 130 nm CMOS 
Clock Rate 200 MHz 

Parallel factor 8 
Throuhgput 12.8 Gb/s 

Latency 320 ns 
Hardawre Complexity Comparison* 

Conventional  22.3K / 96.1K  
IMA  19.8K / 93.5K  

Proposed 10.9K / 84.7K  
* SC block complexity / Overall decoder complexity  
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Fig. 5. The complexity of SC versus the parallel factor                                    
for RS (255, 239, 8) code.  
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reduces the hardware resources, and thus its effect is not 
negligible on the overall complexity.  

Though the proposed method is effective in reducing 
hardware complexity, some CSEs have high fan-outs or 
loading effects, resulting in a slow realization. However, 
the critical path delay is normally decided by other 
pipelined blocks such as KES or EPS block, hence these 
effects are normally negligible even for massive parallel 
architectures. If these effects degrade the overall 
throughput, the CSE-elimination algorithm can be 
modified by giving a constraint on the maximum fan-out 
load. As a result, the area-optimized SC block can be 
always implemented by applying the proposed method 
without deteriorating the decoding throughput. 

V. CONCLUSION 

This paper has proposed an area-optimized structure 
that calculates all syndromes in parallel. The p-parallel 
SC block is formulized as a matrix multiplication in 
order to optimize all the syndrome calculations as a 
whole. The single matrix multiplication makes it possible 
to find more common sub-expressions that can be shared 
in the implementation and completely removes additional 
circuits for modular additions. Experimental results show 
that the proposed architecture remarkably saves 
synthesized equivalent gates compared to the 
conventional and the IMA-based architectures. The 
proposed method can apply to any RS codes regardless 
of the parallel factor and error correction capability, and 

it is effective especially for strong RS decoders 
correcting a large number of errors. 
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